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Abstract
Data availability and accessibility often present challenges to resolving regional water 
management issues. One primary input essential to models and other tools used to inform 
policy decisions is daily precipitation. Since observed datasets are not always present or 
accessible, data from the Climate Forecast System Reanalysis (CFSR) have become a 
potential alternative. A comparison of CFSR precipitation data to available observed data 
from stations in the East African countries Kenya, Uganda, and Tanzania showed notable 
differences between the two datasets, particularly with respect to precipitation totals and 
number of days receiving rainfall. A sliding window bias correction approach evaluated 
using 3 methods with 8 different window length and timestep variations showed that empir-
ical quantile mapping with a 30-day sliding window length and 1-day timestep achieved 
the best performance. A comparison of bias corrected CFSR precipitation data against 
observed data showed marked improvement in the similarity of the number of wet days and 
maximum daily rainfall between the two datasets. For precipitation totals, bias correction 
reduced underprediction errors by 32% and overprediction errors by 81%. Results indicate 
that bias-corrected CFSR precipitation data provides an improved basis for water resources 
applications in the study region. Methodologies and approaches are extendable to other 
data-scarce regions or areas where complete and consistent data are not easily accessible.
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1 Introduction

Lack of reliable and accessible data hampers efforts to form a strong scientific basis for 
water management policy decisions. Daily precipitation is a crucial input for water 
resources modelling and an important basis for storm-related planning. In East Africa, for 
example, the scarcity of good quality, continuous rainfall and other climate data is a chal-
lenge that climate and hydrology researchers have frequently faced (Githui 2008; Dinku 
et  al. 2011; Egeru et  al. 2014; Alemayehu et  al. 2016; Schmocker et  al. 2016; Gebre-
chorkos et al. 2018). A commonly used alternative to observed rainfall data is mathemati-
cally generated weather data, such as the data provided by the global, grid-calculated Cli-
mate Forecast System Reanalysis (CFSR) (Saha et al. 2010). Other simulated climate data 
sources that serve a similar purpose include Climate Hazards Group InfraRed Precipita-
tion (CHIRP), Observational-Reanalysis Hybrid (ORH), and Modern-Era Retrospective 
Analysis for Research and Applications (MERRA). CFSR was chosen for further research 
because it is freely available and readily accessible, it has performed well in regional com-
parison studies of similar datasets (Tesfaye et al. 2017; Zhan et al. 2016), and it is already 
widely used in East Africa (Alemayehu et al. 2016; Schmocker et al. 2016; Anaba et al. 
2017; Mainya 2017; Muthuwatta et al. 2018; Lugoi et al. 2019).

The CFSR provides air temperature, surface and upper-level wind speeds, and precipi-
tation totals among other weather parameters. The CFSR dataset covers the time period 
1979–2010. The CFSR version 2 (V2) dataset is a similar product covering the period from 
2011 to present day, with the effective cutoff being 2019 (Saha et al. 2011). These CFSR 
data have been used for research in the East African region including evaluation of precipi-
tation trends, hydrologic modelling, study of ecosystem and agricultural productivity, and 
climate change analysis (Alemayehu et al. 2016; Schmocker et al. 2016; Anaba et al. 2017; 
Mainya 2017; Muthuwatta et al. 2018; Lugoi et al. 2019). However, previous research on 
the use of CFSR precipitation data and its effect on model performance for East Africa 
has produced mixed results. Lakew et  al. (2020) and López et  al. (2020) recognized the 
great potential of reanalysis datasets, but noted the importance of evaluating their inher-
ent uncertainties when used at a local scale. In some studies, climate data generated by 
the CFSR compared well with those from other climate data sources (Tesfaye et al. 2017; 
Worqlul et al. 2017) while it overestimated precipitation in others (Duan et al. 2019; Zhan 
et al. 2016), hence the considerations for bias correction in this study.

Bias correction techniques generally fall under two categories: 1) scaling, and 2) dis-
tribution adjustment. Examples of scaling techniques include linear scaling (LS), local 
intensity scaling (LOCI), and power transformation (PTR), while methods such as empiri-
cal quantile mapping (EQM) and daily translation (DT), involve modifications to existing 
distributions (Teutschbein and Seibert 2012; Chen et  al. 2013; Smitha et  al. 2018). Lin-
ear scaling uses a factor derived from mean monthly values of control data in relation to 
the corresponding values from long-term observed data (Graham et al. 2007). The LOCI 
method targets the correction of the mean as well as the frequency of wet days in a dataset 
(Schmidli et al. 2006). Power transformation is a straightforward method which has histori-
cally been used in many contexts including the correction of climate data (e.g. Mehan et al. 
2019). The method involves a coefficient and power variable, allowing for changes in both 
the mean and the variance of the dataset (Leander and Buishand 2007). The EQM method 
works if the simulated data provides an accurate prediction of the relative change in quan-
tiles but not necessarily the actual quantile values (Feigenwinter et al. 2018). EQM makes 
adjustments to a simulated cumulative distribution function of the modeled data so that it 
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matches that of the observed data, and DT is a similar correction performed by mapping 
and adjusting the frequency distribution (Chen et al. 2013). For this study, PTR, LOCI, and 
EQM were determined to be the best prospects based on the completeness of the raw data-
sets and the data needs and distribution-related limitations of the different methods.

The aim of this study was to evaluate CFSR data as a substitute for on-site measure-
ments in data-scarce areas and identify bias correction methods that would be appropriate 
to improve the accuracy of the substitute dataset. Specifically, to: 1) determine the extent 
of discrepancies between the observed data and corresponding CFSR data; 2) identify 
the most suitable bias correction method using available data in the study region; and, 
3) develop bias-corrected datasets for select stations within the study region. The study 
focused on the East African countries Kenya, Uganda, and Tanzania (Fig. 1). Limited loca-
tions in the study region have reasonably detailed weather records. However, even where 
the data are available, they are difficult to track down and challenging to obtain permis-
sion to use. As a result, and consistent with the concept of open data, this study generally 
targeted observed datasets that were readily available and easily accessible to anyone with 
internet access.

2  Materials and Methods

As a first step, CFSR precipitation data were compared against available observed daily 
precipitation data from weather stations in the study area to identify differences between 
observed and calculated rainfall. Based on results of the analysis, an investigation into 
potential methods for improving the correspondence between the CFSR and observed data 
was conducted. New datasets comprising corrected data were then developed based on the 
most suitable bias correction method as determined. All statistical calculations, bias cor-
rections, and comparisons were conducted using the R environment (R Core Team 2018), 
selected because it is a reliable software which provides free access to powerful tools.

2.1  Site Description

East Africa is a uniquely diverse region in terms of climate and geography, both of which vary 
greatly across the three countries considered in this study (Fig. 1). The region’s geomorphol-
ogy has a strong influence on the climate conditions experienced at a local level, in particu-
lar the mountain and valley region (Great Rift Valley) cutting through Kenya and Tanzania, 
the Lake Victoria region, and distinct plateaus (Berakhi et al. 2015), all of which comprise 
roughly half of the study area. Kenya is fairly temperate in the southeast where plateaus and 
mountain formations keep weather mild, but to the northeast where there are mainly plains, 
the climate is more arid. Bordering the Indian Ocean, coastal areas in Kenya and Tanzania are 
characterized by heat and humidity. The remaining majority of Tanzania can be characterized 
as a tropical or subtropical plateau with mild weather, with altitude as the main driver of tem-
perature variation. Uganda also consists mainly of temperate tropical plateaus but is warmer, 
particularly during dry periods. Average annual precipitation in Kenya ranges from less than 
300 mm in arid regions to approximately 2,000 mm in the mountains, however the major-
ity of the country experiences less than 500 mm/yr (Mogaka et al. 2006). Tanzania typically 
receives 600–800 mm/yr (Rowhani et al. 2011), but in the southern highlands, precipitation 
exceeds 1,500 mm/yr. Ugandan precipitation can vary from less than 1,000 mm/yr along the 
northeastern border to over 2,000 mm/yr near Lake Victoria (Jury 2018). All three countries 
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have distinct rainy seasons, with two (long and short rains) being experienced in Kenya and 
northeastern Tanzania. In general, future climate projections are in agreement that East Africa 
will see a rise in average temperature (Allen et al. 2018). However, there is uncertainty about 
the effects of this change on rainfall patterns, which are highly dependent upon the Indian 
Ocean and El Niño Southern Oscillation (Indeje et al. 2000; Carabine and Lemma 2014; Cat-
tani et al. 2018).

Fig. 1  Map of East Africa showing the position of observed data station locations relative to a political map 
with hillshading, b average annual precipitation map, and c vegetation map

1590



Evaluation of Reanalysis Precipitation Data and Potential…

1 3

2.2  Observed Precipitation Data Description and Processing

As a basis of comparison for the CFSR data, available daily precipitation datasets for loca-
tions within Kenya and Tanzania were acquired from the NOAA Climate Data Online col-
lections (https:// www. ncdc. noaa. gov/ cdo- web/). Available data obtained from NOAA for 
Uganda locations were insufficient for the planned analysis. Thus, the data were sourced 
directly from the Uganda National Meteorological Authority. The period of concern for 
observed data was 1979–2010, consistent with the original CFSR dataset. Only stations 
with 10 or more years or 90% or more days within the period were included due to con-
cerns that fewer data would be insufficient for the planned analysis. After assessing data 
availability and completeness, 12 stations were selected—five in Kenya, four in Uganda, 
and three in Tanzania (Fig. 1). Data completeness ranged from 34% for Tanzanian stations 
to 91% for Entebbe, Uganda. The observed data were screened for observer biases, using 
methods from Viney and Bates (2004) and Daly et al. (2007), and found to be free of such 
biases. Only years with complete data were used in annual performance evaluations, and 
similarly for monthly analyses (Online Resource 1, Table S1). While the CFSR V2 was 
included in the production of the final product, the V2 dataset was not used in primary 
analysis as it was more recent than the observed datasets.

2.3  CFSR Precipitation Data Description and Processing

CFSR 6-h precipitation totals were downloaded from the National Center for Atmospheric 
Research (NCAR, https:// rda. ucar. edu/) Research Data Archive. The available spatial reso-
lution varies from 0.3 × 0.3 to 2.5 × 2.5 degrees depending on the parameter. For the total 
precipitation dataset, the finest resolution available is 0.5 × 0.5 degrees. Daily totals were 
calculated by summing 24-h periods beginning at 18:00 UTC the day prior to the day of 
record to accommodate the time zone difference. Generally, the closest CFSR grid point to 
each station was selected for evaluation (Online Resource 1, Table S1). This was due to the 
high variation in climate and topography across a half-degree square in this study region, 
and hence, concern regarding the influence that surrounding grid points would have on the 
CFSR values used in the study. Jinja and Soroti were positioned between two proximate 
stations. In these cases, the grid point dataset which resulted in the highest Spearman’s 
rank correlation coefficient when compared against the available daily data was selected.

2.4  Comparisons Between Observed and CFSR Precipitation Data

Descriptive properties (mean and median) and essential characteristics (Mehan et al. 2017) 
for rainfall data calculated on a monthly basis for each station were compared with those 
from the corresponding CFSR grid point data. Essential characteristics considered in 
this study included: daily maximum precipitation (Max); number of days receiving rain-
fall (NWet); number of days receiving rainfall in excess of the  95th and  99th percentiles of 
observed precipitation for each station (N95 and N99, respectively); and, the sum of pre-
cipitation received on those days in which precipitation exceeded the  95th and  99th percen-
tiles (S95 and S99, respectively). These characteristics were selected based on their impor-
tance in previous work (Gitau 2016; Mehan et  al. 2017) and their relevance to climate 
change and extreme weather events (Zhang et al. 2011). Additionally, plots were created of 
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CFSR daily precipitation quantiles against quantiles for all daily precipitation observations 
in months with complete data, with CFSR datasets being trimmed to match observed data 
periods.

Preliminary analysis showed several discrepancies between the CFSR and observed 
data. In general, the precipitation obtained by CFSR was more frequent and lower in mag-
nitude, indicating the tendency for the re-analysis to spread rainfall over multiple days 
rather than simulating larger rainfall events. This tendency has previously been reported 
for CFSR precipitation (Nkiaka et al. 2017) and has also been observed with other model-
based datasets (Mehan et  al. 2019). For most stations, there was similarity in month-to-
month patterns in median (Med) and NWet, but monthly values for the two datasets being 
compared were substantially different. Q-Q plots for daily rainfall revealed substantial dif-
ferences between the distributions of observed and CFSR datasets. This preliminary analy-
sis indicated the need to correct or transform the CFSR data to improve their represen-
tation of observed data. More details on the results of the comparisons are presented in 
Section 3.1 and Online Resource 2, Figure S1.

2.5  Evaluation and Selection of Bias Correction Methods

Based on the success and applicability of different approaches to correcting bias in climate 
datasets (Schmidli et al. 2006; Leander and Buishand 2007; Chen et al. 2013; Smitha et al. 
2018), the sliding window approach in conjunction with one of the aforementioned bias 
correction methods (LOCI, PTR, EQM) was selected for further investigation as a poten-
tial solution for improving the representation from the CFSR dataset. The sliding window 
technique accounts for the seasonal characteristic of precipitation data as bias correction is 
performed over a window length of a given duration once every time step. Sliding window 
bias correction requires some initial precipitation data to train the correction. Bias correc-
tion was performed using the well-developed and tested downscaleR (Bedia et al. 2017), 
part of the climate4R bundle (Iturbide et al. 2019). DownscaleR supports several different 
bias correction methods and has a history of success and flexibility in application (Casa-
nueva et al. 2019; Araya-Osses et al. 2020; Bedia et al. 2020).

Base testing of the bias correction methods was performed using the Nairobi Jomo 
Kenyatta International Airport (JKIA) dataset, selected because it had been used to con-
duct a variety of preliminary evaluations. Bias correction approaches for all available 
data were assessed using combinations comprising different: bias correction methods 
(LOCI, PTR, and EQM); window lengths (30, 45, 60, and 90 days); and, time steps (1 and 
15 days)—resulting in a total of 24 combinations (naming convention: “Method Window 
Length–Time Step”, e.g. EQM 90–15). Two subsets were formed from the observed data: a 
training period comprising the first 10 complete years; and, a testing period comprising the 
final year with complete data. These subsets were then used as inputs to the bias correction 
function from the downscaleR package.

The performance of the different approaches was evaluated based on the root mean 
squared error (RMSE), Nash–Sutcliffe efficiency coefficient (NSE), and mean absolute 
error (MAE) calculated for the different characteristics. The different approaches were 
ranked best (1) to worst (24) for each performance metric. Metric rankings for each 
approach were then summed to form a score. Lower scores corresponded to a better 
rank and better performance overall. To avoid giving undue influence to the first set of 
10 years that were used for testing, the scoring was performed again using all 11 years 
that had complete data. Cross validation (Jolliffe and Stephenson 2012) was used to 
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verify the robustness of the highest performing approach. This technique was chosen 
as it avoided the complete exclusion of any portion of the already limited observed 
dataset. For the cross validation, the chosen bias correction method was applied to all 
11 configurations of 10 years used for training with one reserved for testing. The mean 
and 95% confidence interval for each month’s error values were established for each 
statistic, with a small confidence interval considered to be an indication that there was 
little variation in the errors between configurations. The bias correction approach that 
performed best was applied to the observed data from the 12 stations. The mean and 
95% confidence interval for the error for the essential characteristics from the final 
bias correction were compared against the error range produced in the validation of the 
method for JKIA to confirm that the bias correction technique performed on a similar 
level for all stations.

3  Results

3.1  Comparison of CFSR and Observed Data

The comparison of the CFSR dataset to the available observed data revealed discrep-
ancies in the overall distribution of rainfall quantities, as determined from Q-Q plots 
(Fig. 2-I, blue; Online Resource 2, S3-S4). For Garissa, Mombasa, and Mwanza, the 
CFSR exhibited behavior very similar to that of Nairobi/JKIA, severely underestimat-
ing the quantities of days with higher precipitation. The Q-Q plots for several of the 
remaining stations showed poor fit in the moderate precipitation days, while the dis-
tribution of CFSR data for Entebbe was substantially different from that of observed 
data.

The total CFSR precipitation by station varied between 41.3% and 196.4% of the 
corresponding sum of daily precipitation observations for all complete months. Mean 
and range values of the absolute monthly errors (Table 1) indicated that although N95 
and N99 were on average within a day or two of the observed number, there were 
substantial errors in the corresponding totals, S95 and S99. This was attributable to 
the tendency for the CFSR to predict monthly patterns correctly but incorrectly esti-
mate the magnitude of the change or the baseline amount (Online Resource 2, Fig. S1). 
Nonetheless, the absolute error for the N95 and N99 could go as high as 18 and 8 days, 
respectively, with maximum monthly absolute errors for the corresponding extreme 
rainfall summations being 750 mm and 589 mm. Errors in the number of wet days were 
substantial, with average values ranging between 4 and 19 days and maximum monthly 
error up to 30  days, or essentially an entire month. Most of this is fairly consistent 
with overall observations on the CFSR and climate models in general (Nkiaka et  al. 
2017; Mehan et  al. 2019). Discrepancies in maximum daily rainfall were also high 
with average absolute errors ranging between 10 and 28  mm, and maximum values 
ranging between 70 and 291 mm. In general, the highest errors in Med and NWet were 
observed at JKIA, while Mandera and Mwanza had the lowest errors. For the major-
ity of metrics and stations, however, the minimum absolute error observed was zero, 
indicating that there were months in which the two datasets were perfectly matched. 
From these observations, it was determined that the CFSR precipitation dataset could 
potentially be refined and improved through bias correction.
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3.2  Bias Correction Method and Window Length Determination

Of the 24 bias correction method-window length–time step combinations evaluated (Online 
Resource 1, Tables  S2, S3), the EQM 45–1, EQM 30–1, and EQM 30–15 approaches 
received the top three scores for the first decade ranking. The ranking with all 11 years 
resulted in EQM 30–1, EQM 45–15, and LOCI 30–15 as the top scoring approaches. In 

Fig. 2  (I) Q-Q plots of daily rainfall for a  Nairobi/JKIA, b  Garissa, c  Mombasa, d  Mtwara, e  Mwanza, 
f  Tabora, g  Arua, h  Soroti, and i  Entebbe. (II) Mean and 95% confidence interval for monthly error in: 
median daily precipitation (Med) for a  Mombasa and d  Arua; maximum daily precipitation (Max) 
for b Entebbe and e Mtwara; and, number of days receiving rainfall (NWet) for c Nairobi /JKIA and f Man-
dera. Blue markers represent original CFSR; Black markers represent bias corrected CFSR
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general, EQM 30–1 performed very well in correcting NWet, N95, and Max and performed 
moderately well for remaining metrics; both EQM 45–1 and 45–15 achieved slightly better 
results with respect to NWet but performance was sacrificed in N99 and N95, and while 
LOCI 30–15 achieved excellent results in mean correction, it performed comparatively 
poorly with NWet. From the two rankings, EQM 30–1 was found to be more robust and 
was selected for further use.

3.3  Evaluation of Corrected Data

Ranges and means of absolute errors in corrected data are presented in Table 1. A selec-
tion of graphs for Med, Max, and NWet showing the mean and 95% confidence interval on 
the error between CFSR and observed data as well as between bias corrected and observed 
data are presented in Fig. 2-II. Reduction in the distance between the mean error point and 
zero error and reductions in the span of the confidence interval were indicators of improve-
ment. Any instances in which the mean error diverged further from zero following cor-
rection were considered inadequate with respect to the performance of the correction. For 
each characteristic, two graphs were included to exhibit examples of cases where the bias 
correction had a beneficial effect and where corrected data performed the same or worse 
than the uncorrected data. Corresponding graphs for the remaining characteristics are pre-
sented in Online Resource 2, Fig. S2. Heatmaps summarizing the efficacy of the bias cor-
rection based on performance metrics are presented as supplementary information (Online 
Resource 2, Fig. S5-S7).

Marked improvements were seen in NWet and Max for all stations (Table 1), although a 
slightly higher average error in Max was seen at JKIA while the range of errors increased at 
Moyale and Mwanza. The bias correction was particularly effective for NWet at JKIA, with 
its reduction in magnitude of average monthly error from approximately 19 days to less 
than 3 days. Results for N95 and S95 were mixed, with improvements primarily seen in 
Kenyan stations. For Med at Mombasa (Fig. 2-II), improvements pertained to March/April 
and November/December periods, capturing values corresponding to long and short rains 
respectively. For Max at Entebbe the underestimation for all months was improved while 
bias correction did not make a substantial impact for Med at Arua and Max at Mtwara 
(Fig. 2-II); errors in N99 were generally small and mostly unchanged for raw and corrected 
CFSR data. Results for monthly mean errors in S99 were, however, either not as favorable 
or produced mixed results (Table  1; Online Resource 2, Fig.  S3-S5). Overall, the mean 
error of Med, Max, NWet, and N95 were brought closer to zero, even though the span of 
the confidence intervals did not always change substantially. Additionally, the range of total 
precipitation after bias correction as a percentage of the total precipitation observed ranged 
between 73.4%-115.4%, representing reductions of 32% and 81% in under-prediction and 
over-prediction errors, respectively. In general, bias correction resulted in an improvement 
in the data over the uncorrected dataset.

3.4  Bias‑Corrected Datasets

The daily Q-Q plots for each bias corrected dataset against the available measured data 
(Fig.  2-I, black) showed marked improvements in the distributions of the CFSR data in 
relation to the distributions of the observed data, particularly in middle quantiles. For some 
of the stations the bias corrections resulted in a small number of missing values, impact-
ing less than 0.3% of the data during the 1979–2010 time period. These missing values 
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were thought to be attributable to data overflow errors occurring during the correction. As 
the proportion of the dataset impacted was very small, the value for any day for which the 
output was missing was replaced with the corresponding uncorrected CFSR value for that 
date. A performance comparison with and without the replaced values showed no substan-
tial differences. Based on the performance results, bias corrected datasets were developed 
for the period of 1 January 1979 to 31 December 2019 for each of the 12 station loca-
tions. These datasets will be made available for public use through the Purdue University 
Research Repository (https:// purr. lib. purdue. edu).

4  Discussion

The use of simulated rainfall data provides a solution for areas with inconsistent datasets. 
However, errors in the generated rainfall data are propagated through subsequent appli-
cations such as hydrologic models, water balance approximations, or characterizations of 
storm events and patterns that rely solely on these simulated datasets. In this study, the 
potential for improvements to the precipitation portion of a well-used, openly available cli-
mate dataset—CFSR—was explored. Approaches for bias correction of the dataset were 
evaluated through the application of 24 different combinations of bias correction methods, 
sliding window dimensions, and time steps. The highest performing approach was applied 
to CFSR data for the 12 selected stations, and results were compared against corresponding 
observed data to determine the extent of improvements to the preexisting dataset. Overall, 
the bias correction provided improved datasets based on the comparisons.

The discrepancy in the way the rainfall was distributed on a daily basis was the most 
important and yet particularly challenging to address. The CFSR typically underestimated 
higher rainfall amounts while over-estimating the number of wet days, suggesting the ten-
dency to spread rainfall over a number of days rather than simulating large events. This was 
especially important due to the potential impact on the ability to capture extreme events 
for use with applications such as flood prediction or agricultural needs. While the three 
bias correction methods evaluated have a history of performing well with precipitation data 
(Fang et al. 2015; Luo et al. 2018), the EQM approaches performed at the highest level, 
overall. The EQM method used was nonparametric (Amengual et al. 2012), which was one 
of the contributing factors to its better performance. Since it did not rely on a particular 
distribution, it was able to capture more of the irregularities in the individual distributions 
of each station.

One reason LOCI may have lagged behind in performance is that many of the char-
acteristics that were the focus for this study were based on precipitation extremes which 
LOCI does not typically capture well (Schmidli et  al. 2006). It was surprising that the 
LOCI method did not show a better performance for the wet day counts since the method 
does specifically make adjustments to wet day frequency (Chen et  al. 2013). A sugges-
tion to address distribution of extrema across months within a season and disconnection 
between monthly corrections is through iterative bias corrections using multiple window 
lengths (Pierce et. al 2015). While computationally taxing, such a method may be an excel-
lent option to consider if bias correcting for a single location. The 30–1 sliding window 
adopted for this study achieved the best results based on the employed metrics and is con-
sistent with the widely accepted window length of approximately one month (Wilcke et al. 
2013; Pierce et al. 2015; Ma et al. 2019).
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Another approach to the development of a more robust bias correction methodology that 
might be considered in the future is a power transformation based on one or more climate 
factors. In this power transformation, parameters would be scaled as needed to reduce the 
difference between the observed and simulated coefficients of variation, similar to exist-
ing methods (Leander and Buishand 2007; Teutschbein and Seibert 2012) but with the 
added nuance of the parameters being a function of the aforementioned climate factors. 
Initially, it was hoped that such a methodology could be adopted in this study. However, 
distances between the observed data stations paired with the dramatic changes in climate 
and topography over relatively short distances in the study region (Mogaka et  al. 2006; 
Rowhani et al. 2011; Foerch et al. 2015; Berakhi et al. 2015), were a serious impairment 
to the identification of common attributes among stations in relation to the corresponding 
CFSR performance.

The study methodology was strategically designed to use readily accessible tools and 
gridded data so it can be applied to any station with sufficient data available. Perspectives 
differ on what constitutes a sufficient period of observed climate data for downscaling or 
as a basis of manipulation, with recommended lengths ranging from as few as four years 
(Maurer et al. 2013) to 30 years (Mekonnen et al. 2019). In this study, a 10-year thresh-
old was used with a comfortable exception made for Entebbe as its dataset for the 30-year 
period was nearly 91% complete. In data-scarce locations, it may be difficult or impos-
sible to amass 30—or even just 10—years of data. In this study, bias correction did not 
necessarily perform better at stations with more data and, in some cases, the performance 
was worse. These results provide evidence that a strict minimum period of continuous data 
might not indicate the suitability of datasets for use in bias correction. Hofer et al. (2015) 
suggested that even small amounts of data are sufficient provided that the bias correction 
makes a skilled improvement. Thus, the potential and value of a bias correction is best 
determined on a case by case basis.

5  Conclusions

Lack of reliable and accessible precipitation data is a perpetual problem hindering effective 
water resources management in the study region and other data scarce regions in general. 
This study was conducted to determine the suitability of CFSR rainfall data as a substitute 
for on-site measurements in data-scarce regions and identify bias correction methods that 
would be appropriate to improve the accuracy of the dataset, with specific focus on the East 
African countries—Kenya, Uganda, and Tanzania. Results showed that the CFSR provides 
an easily accessible, reliable option for data-scarce regions and can be improved with bias 
correction to make it more representative of observed data. The sliding window technique 
with a 30-day window length and single-day timestep applied to Empirical Quantile Map-
ping (EQM 30–1) provided the best method for this application. Corrected CFSR datasets 
overall provided an improved representation of the observed data, particularly with respect 
to the number of wet days and also for the median, maximum, and  95th percentile rainfall. 
The resulting bias corrected datasets and the methodology outlined for optimizing a slid-
ing window bias correction can be used to further water research and other water resource 
management endeavors in the study area. Additionally, the approaches used in this study 
provide solutions applicable to other regions where precipitation data records are scarce, 
incomplete, or inaccessible, and, potentially, to similar substitute datasets.
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